Sains Malaysiana 54(5)(2025): 1291-1304
http://doi.org/10.17576/jsm-2025-5405-08
Field
Resistance Status of Hot Pepper to the Pepper Yellow Leaf Curl Indonesian Virus
in Relation to Volatile Compounds
(Status Rintangan Ladang Lada Pedas terhadap Virus Daun Lada Kuning Keriting Indonesia Berkaitan Sebatian Meruap)
PUSPITA DESWINA1,
RINDA KIRANA1, KARDEN MULYA1, NENI GUNAENI1,
SOBIR2, DANI SATYAWAN3, KRISTIANTO NUGROHO1,
RERENSTRADIKA TIZAR TERRYANA4, DYAH MANOHARA1, DARKAM
MUSADDAD5, IMAS RITA SAADAH1 & TONNY KOESTONI
MOEKASAN1,*
1Research Center for Horticulture, National Research and Innovation
Agency, Kawasan Sains dan Teknologi Soekarno, Jl. Raya Jakarta-Bogor KM 46, Kabupaten Bogor 16915, Jawa Barat, Indonesia
2Faculty of Agriculture,
IPB University, Jl. Kamper Babakan Dramaga, Kabupaten Bogor
16680, Jawa Barat, Indonesia
3Research Center for Genetic Engineering, National Research and
Innovation Agency, Kawasan Sains dan Teknologi Soekarno, Jl. Raya Jakarta-Bogor KM 46, Kabupaten Bogor 16915, Jawa Barat, Indonesia
4Research Center for Applied Botany, National Research and Innovation
Agency, Kawasan Sains dan Teknologi Soekarno, Jl. Raya Jakarta-Bogor KM 46, Kabupaten Bogor 16915, Jawa Barat, Indonesia
5Research Center for Appropriate Technology, National Research and
Innovation Agency, Jl. KS Tubun, Subang, Kabupaten Subang, Jawa Barat, Indonesia
Received: 29 May 2024/Accepted: 7 February 2025
Abstract
The Pepper
Yellow Leaf Curl Indonesian (PYLCI) virus, transmitted by the whitefly, has a
significantly detrimental impacts on the productivity of hot peppers. Despite
the implementation of extensive breeding programs, the development of varieties
resistant to PYLCI remains a challenging endeavor.
This study proposes a novel strategy that considers vector-host interactions
with the objective of enhancing resistance. A total of 37 genotypes of hot
pepper, collected by IPB University and the National Research and Innovation
Agency (NRIA), along with two registered varieties of hot pepper (Bonita and Sigantung), were utilized in this study. The results were
classified into five categories based on the disease reaction observed in the
tested genotypes. The IPB RF 41 genotype exhibited high resistance, with no
instances of diseases and minimal symptom intensity. In contrast, the IPB RF 20
genotype demonstrated high susceptibility, with a 64% incidence of disease and
a symptom intensity of 41.85%. The distribution of the whitefly was consistent
across the area, with an average of 29–39 imagos per
week in each trap. The flowers and leaves of the CR-2022-46 (resistant) and IPB
RF 29 (susceptible) genotypes were found to contain volatile compounds. The
resistant genotypes exhibited a reduced number of volatile floral compounds.
Leaf analysis showed the presence of D-limonene, indole, naphthalene,
1.4.5-trimethyl-, whereas these compounds were not detected in the flowers.
Conversely, α-fenchene and naphthalene,
2-methyl-, were found exclusively in the flowers. Beta-ocimene plays a role in
the whitefly-hot pepper interaction, with varying patterns of increasing from
the vegetative to generative phases between resistant and susceptible
genotypes. Resistant plants released higher levels of (E)-4,8-Dimethylnona-1,3,7-triene
(DMNT) in both phases. This information could prove beneficial for the further
development of alternative breeding programs focused on PYLCI resistance, and
potentially revolutionize the agricultural practices in Indonesia.
Keywords: Hot pepper (Capsicum frutescens);
pepper yellow leaf curl Indonesian virus; resistance; volatile compounds
Abstrak
Virus Daun Lada Kuning Keriting Indonesia (PYLCI) yang disebarkan oleh lalat putih, secara signifikan menghalang produktiviti lada pedas. Walaupun pelaksanaan program pembiakan yang meluas, pembangunan varieti rintang PYLCI masih sukar diperoleh. Penyelidikan ini mencadangkan strategi baharu yang mengambil kira interaksi vektor-perumah sebagai objektif untuk meningkatkan ketahanan. Sebanyak 37 genotip lada pedas yang dikumpulkan oleh Universitas IPB dan Badan Penelitian dan Inovasi Nasional (NRIA), serta dua varieti lada pedas berdaftar (Bonita dan Sigantung) digunakan dalam kajian ini.
Hasil telah dikelaskan kepada lima kategori berdasarkan reaksi penyakit yang diperhatikan dalam genotip yang diuji. Genotip IPB RF 41 menunjukkan ketahanan tinggi dengan tiada kejadian penyakit dan keamatan gejala yang minima, manakala genotip IPB RF 20 sangat mudah terjejas dengan 64% kejadian penyakit dan keamatan gejala 41.85%. Taburan lalat putih adalah tekal di seluruh kawasan dengan purata 29 - 39 imago setiap minggu dalam setiap perangkap. Sebatian volatil dikenal pasti dalam bunga dan daun genotip CR-2022-46
(rintang) dan IPB RF 29 (mudah terjejas). Genotip rintang menunjukkan pengurangan sebatian meruap bunga. Analisis daun menunjukkan kehadiran D-limonena, indola, naftalena, 145-trimetil-, tetapi sebatian ini tidak terdapat pada bunga. Sebaliknya,
α-fensena dan naftalena,
2-metil- dijumpai eksklusif pada bunga. Beta-ocimene memainkan peranan dalam interaksi lalat putih-lada pedas yang berbeza antara genotip tahanan dan genotip rentan dengan pola yang berubah daripada fasa vegetatif kepada fasa generatif. Tanaman rentan melepaskan tahap (E)-4,8-Dimetilnona-1,3,7-trien
(DMNT) yang lebih tinggi dalam kedua-dua fasa. Maklumat ini boleh memberi manfaat untuk pembangunan program pembiakan alternatif yang memberi tumpuan kepada rintang PYLCI dan berpotensi merevolusi amalan pertanian di Indonesia.
Kata kunci: Lada merah (Capsicum frutescens); rintang; sebatian volatil; virus daun lada kuning keriting Indonesia
REFERENCES
Abdillah, M.H. 2021. Memperbaiki serapan hara dengan aplikasi bahan organik untuk meningkatkan resistensi tanaman cabai terhadap virulensi kutukebul. Argon. Indonesia 49: 280-287.
Abubakar, M., Koul, B.,
Chandrashekar, K., Raut, A. & Yadav, D. 2022. Whitefly (Bemisia tabaci) management (WFM) strategies for
sustainable agriculture: A review. Agriculture 12(9): 1317.
Akhter, A., Sakhte, M., Saeed & Mansoor, S. 2014. Chili leaf curl
beta-satellite enhances symptoms induced by tomato leaf curl New Delhi virus, a
bipartite begomovirus. International Journal of Agriculture and Biology 16(6): 1225-1228.
Brown, J.K. & Czosnek, H. 2002. Whitefly transmission of plant viruses. Advances
in Botanical Research 36: 65-76.
Czosnek, H., Hariton-Shalev,
A., Sobol, I., Gorovits, R. & Ghanim, M. 2017.
The incredible journey of begomoviruses in their
whitefly vector. Viruses 9(10): 273.
De Barro, P.J., Liu,
S.S., Boykin, L.M. & Dinsdale, A.B. 2011. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56: 1-19.
De Barro, P.J., Hidayat,
S.H., Frohlich, D., Subandiyah, S. & Ueda, S.
2008. A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two
new invaders of Indonesia. Biol. Invasion 10: 411-433.
Devendran, R., Kumar, M.,
Ghosh, D., Yogindran, S., Karim, M.J. &
Chakraborty, S. 2022. Capcicum-infecting begomoviruses as global pathogens: Host-virus interplay,
pathogenesis and management. Trends in Microbiology 30(2): 170-184.
Direktorat Perlindungan Hortikultura Kementerian Pertanian.
2023. Data Luas Komulatif Serangan OP Cabai 2020.Subdit Data dan Kelembagaan (pertanian.go.id) (Accessed on March 1st, 2023).
Dolores, L.M. 1997.
Management of Pepper viruses. AVNET-II,
Final Workshop Proceeding, AVRDC-Tainan-Taiwan. Bangkok, Thailand, 1-6
September 1996.
Duriat, A.S. 2008. Pengaruh ekstrak bahan nabati dalam menginduksi ketahanan tanaman cabai terhadap vector dan penyakit kuning keriting. Jurnal Hortikultura 18(4): 446-456.
Faizal, A., Esyanti, R.R., Aulianisa, E.N., Iriawati, Santoso, E. & Turjaman, M. 2017. Formation of agarwood from Aquilaria maccensis in response to inoculation of local strains of Fusarium solani. Trees 31: 189-197.
Farré-Armengol, G., Filella, I., Llusià, J. & Peñuelas, J.
2017. β-Ocimene, a key floral and foliar volatile involved in multiple
interactions between plants and other organisms. Molecules 22(7): 1148.
FAOSTAT. 2023. Crops
and Livestock Products. FAOSTAT (accessed on March 7th, 2023).
Fiallo-Olive, E. & Navas-Castillo,
J. 2023. Begomoviruses: What is the secret(s) of
their success? Trends in Plant Science 28(6): 715-727.
Fiallo-Olive, E., Pan,
L.L., Liu, S.S. & Navas-Castillo, J. 2020. Transmission of begomoviruses and other whitefly-borne viruses: Dependence
on the vector species. The American Phytopathological Society 110: 10-17.
Furdíková, K., Machyňáková, A., Drtilová,
T., Klempová, T., Ďurčanská,
K. & Špánik, I. 2019. Comparison of volatiles in
noble-rotten and healthy grape berries of Tokaj. LWT 105: 37-47.
Ganefianti, D.W., Sujiprihatis, Hidayat, S.H. & Syukur, M. 2008. Metode penularan dan uji ketahanan genotip cabai terhadap begomovirus. Akta Agrosia 11(2): 162-169.
Ghelani, M.K., Kabaria,
B.B., Ghelani, Y.H., Shah, K.D. & Acharya, M.F. 2020. Biology of whitefly, Bemisia tabaci (Gennadius) on tomato. Journal of Entomology and Zoology Studies 8(4): 1596-1599.
Guarino, S., Abbate, L., Mercati, F., Fatta Del Bosco, S., Motisi, A., Arif, M.A., Cencetti, G., Palagano, E. & Michelozzi, M.
2021. Citrus varieties with different tolerance grades to tristeza virus show
dissimilar volatile terpene profiles. Agronomy 11: 1120.
Gunaeni, N., Wulandari, A.W.
& Hudayya, A. 2015. Pengaruh bahan ekstrak tanaman terhadap pathogenesis
related protein dan asam salisilat dalam menginduksi resistensi tanaman cabai merah terhadap virus kuning keriting. Jurnal Hortikultura 26(2): 160-170.
Guo, X.X., Yang, X.Q.,
Yang, R.Y. & Zeng, Q.P. 2010.
Salicylic acid and methyl jasmonate but not Rose
Bengal enhance artemisinin production through invoking burst of endogenous
singlet oxygen. Plant Science 178 (4): 390-397.
Hasyim, A., Setiawati,
W. & Liferdi. 2016. Kutukebul Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) penyebar penyakit virus mosaik kuning pada tanaman terung. Iptek Hortikultura 12: 50-54.
Herrera, L.S., Rikk, P.,
Köblös, G., Szelényi, M.O., Molnár, B.P., Dekker, T. & Tasin, M. 2020.
Designing a species-selective lure based on microbial volatiles to target Lobesia botrana. Sci.
Rep. 10(1): 6512.
Horowitz, A.R., Ghanim,
M., Roditakis, E. & Naun, I.I. 2020. Insectiside resistance and its management in Bemisia tabaci species. J. Pest Sci. 93(3): 893-910.
Jayanthi, P.D.K.,
Woodcock, C.M., Caulfield, J., Birkett, M.A. & Bruce, T.J.A. 2012.
Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis. J. Chem. Ecol. 38: 361-369.
Johnston, N., Paris, T.,
Paret, M.L., Freeman, J. & Martini, X. 2022. Repelling whitefly (Bemisia tabaci) using
limonene-scented kaolin: A novel pest management strategy. Crop Protection 154: 105905.
Jones, D.R. 2003. Plant
virus whitefly. Eur. J. Plant. Phatol. 109: 195-219.
Junior, S.B., Tavares,
A.M., Filho, J.T., Zini, C.A. & Godoy, H.T. 2012. Analysis of the volatile
compounds of Brazilian chili peppers (Capsicum spp.) at two stages of
maturity by solid phase micro-extraction and gas chromatography-mass
spectrometry. Food Research International 48: 98-107.
Kamaliah, T.L., Hidayat, P., Maharijaya, A.,
Sobir & Syukur, M. 2022. Preferensi Bemisia tabaciGenn. dan kaitannya dengan karakter anatomi dan morfologi daun pada cabai (Capsicum annuum L.). J. Agron. Indonesia 50(3): 291-298.
Kementerian Pertanian Republik Indonesia.
2023. Data Lima Tahun Terakhir (Accessed on March 7th, 2023).
Kirana, R., Karyadi, A.K., Faizal, A. & Syamsudin,
T.S. 2019. Dataset on volatile compounds in susceptible and resistant chili
variety to fruit fly infestation. Data in
Brief 22: 234-236.
Kustanto, H. 2022. Testing of
superiority and resistance of hot pepper of blaze 12 variety to pepper yellow
leaf curl disease. Journal of Plant Protection 5(2): 91-97.
Lacey, E.S., Moreira,
J.A., Millar, J.G. & Hanks, L.M. 2008. A male-produced aggregation
pheromone blend consisting of alkanediols,
terpenoids, and an aromatic alcohol from the cerambycid beetle Megacyllene caryae. J. Chem. Ecol. 34(3): 408-417.
Legarrea, S., Barman, A.,
Marchant, W., Diffie, S. & Srinivasan, R. 2015. Temporal effect of a Begomovirus infection and host plant resistance on the
preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS ONE 10(11): e0142114.
Li, F., Dewer, Y., Li,
D., Qu, C. & Luo, C. 2021. Functional and evolutionary characterization of
chemosensory protein CSP2 in the whitefly, Bemisia tabaci. Pest Manag. Sci. 77(1): 378-388.
Louws, F.J., Mary, K.H.,
John, F.K. & Cristine, T.S. 1996. Impact of reduced fungicide and tillage
on blight, fruit root, and yield processing tomatoes. Plant Diseases 8: 1251-1256.
Luning, P.A., de Rijk,
T., Wichers, H.J. & Roozen, J.P. 1994. Gas chromatography, mass
spectrometry, and sniffing port analyses of volatile compounds of fresh bell
peppers (Capsicum annuum) at
different ripening stages. J. Agric. Food
Chem. 42(4): 977-983.
Marianah, L. 2020. Serangga vektor dan intensitas penyakit virus pada tanaman cabai merah. Agrihumanis: Journal of Agriculture and Human Resource
Development Studies 1(2): 127-134.
Meents, A.K., Chen,
S.P., Reichelt, M., Lu, H.H., Bartram, S., Yeh, K.W. & Mithofer,
A. 2019. Volatile DMNT systemically induces jasmonate-independent
direct anti-herbivore defense in leaves of sweet potatos (Ipomoea
batatas) plants. Scientific Reports 9: 17431.
Moekasan, T.K., Basuki, R.S.
& Prabaningrum, L. 2012. Penerapan ambang pengendalian organisme pengganggu tumbuhan pada budidaya bawang merah dalam upaya mengurangi penggunaan pestisida. J. Hort. 22(1): 47-56.
Narendra, A.A.G.A., Phabiola, T.A. & Yuliadhi,
K.A. 2017. Hubungan antara populasi kutukebul (Bemisia tabaci) (Gennadius) (Hemiptera: Aleyrodidae) dengan insiden penyakit kuning pada tanaman tomat (Solanum Lycopersicum Mill.) di dusun Marga Tengah, desa Kerta, kecamatan Payangan, Bali. E-Jurnal Agroekoteknologi Tropika 6(3): 339-348.
Naveed, H., Islam, W.,
Jafir, M., Andoh, V., Chen, L. & Chen, K. 2023. A review of interactions
between plants and whitefly-transmitted begomoviruses. Plants 12(21): 3677.
Prabaningrum, L. & Moekasan, T.K. 2014. Pengelolaan organisme pengganggu tumbuhan utama pada budidaya cabai merah di dataran tinggi. J. Hort. 24(2): 179-188.
Pyne, M.E., Narcross, L. & Martin, V.J.J. 2019. Engineering plant
secondary metabolism in microbial systems. Plant Physiol. 179(3):
844-861.
Richter, A., Schaff, C.,
Zhang, Z., Lipka, A.E., Tian, F., Kollner, T.G.,
Schnee, C., Preib, S., Irmisch,
S., Jander, G., Boland, W., Gershenzon, J., Buckler,
E.S. & Degenhardt, J. 2016. Characterization of biosynthetic pathways for
the production of the volatile homoterpenes DMNT and
TMTT in Zea mays. The Plant Cell 28(10): 2651-2665.
Roy, B., Chakraborty, P.
& Ghosh, A. 2021. How many begomovirus copies are
acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLoS ONE 16(10): e0258933.
Saraiva, W.V.A.,
Dias‑Pini, N.S., Alves Filho, E.G., Melo, J.W.S., Fancelli,
M., Coutinho, C.R., Zocolo, G.J., Rodrigues, T.H.S.,
Duarte, P.M., Macedo, V.H.M. & Goiana, E.S.S.
2022. Attraction of whitefly Aleurodicus cocois mediated by cashew volatiles. Phytoparasitica 50: 399-410.
Schlaeger, S., Picket,
J.A. & Birkett, M.A. 2018. Prospects for management of whitefly using plant semiochemicals, compared with related pests. Pest Manag. Sci. 74(11): 2405-2411.
Selangga, D.G.W., Wiyono, S., Susila, A.D. & Hidayat, S.H. 2021.
Distribution and identification of pepper yellow leaf curl Indonesia virus
infecting chili pepper in Bali. Jurnal Fitopatologi Indonesia 17(6): 217-224.
Septariani, D.N., Hadiwiyono, Harsono, P. &
Mawar, M. 2020. Pemanfaatan minyak serai sebagai bahan aktif nanovirusida untuk pengendalian penyakit kuning pada cabai. PRIMA: Journal
of Community Empowering and Services 4(2): 51-58.
Singh, A.P., Singh,
S.R.P., Pal, M., Singh, R., Singh, R.S. & Kumari, R. 2021. Screening and
identification of chilli leaf curl virus resistance genotypes in chilli. The
Pharma Innovation Journal 10(2): 531-533.
Soumia, P.S.,
Pandi, G.G.P., Krishna, R., Ansari, W.A., Jaiswal, D.K., Verma, J.P. &
Singh, M. 2020. Whitefly-transmitted plant viruses and their management. In Emerging Trends in Plant Pathology, edited by Singh, K.P., Jahagirdar, S. &
Sarma, B.K. Singapore: Springer. pp. 175-195.
Srivastava, M., Mangal,
R.K., Saritha & Kalia, P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the begomoviruses causing chilli leaf curl disease in India. Crop Protection 100: 177-185.
Subekti, D., Hidayat, S.H., Nurhayati, E.
& Sujiprihati, S. 2006. Infeksi cucumber mosaic virus dan chilli veinal mottle virus terhadap pertumbuhan dan hasil tanaman cabai. Hayati Journal
of Biosciences 13(2): 53-57.
Suganda, T., Rismawati, E., Yulia, E. & Nasahi,
C. 2002. Pengujian bahan kimia dan air perasan daun tumbuhan dalam menginduksi resistensi tanaman padi terhadap penyakit bercak daun Cercospora. Jurnal Bionatura 4(1): 17-28.
Sulandari, S. 2006. Pepper yellow leaf curl disease in
Indonesia. Indonesia J. Plant Pro. 12(1): 1-10.
Sulandari, S. 2004. Kajian biologi, serologi, dan analisis sidik jari DNA virus penyebab penyakit daun keriting kuning pada cabai. PhD
dissertation, IPB University: Bogor, Indonesia (Unpublished).
Sulistyo, A. 2016. Kriteria seleksi penentuan ketahanan kedelai terhadap kutukebul. Jurnal Iptek Tanaman Pangan 11(1): 77-84.
Syamsudin, T.S., Kirana, R., Karjadi, A.K. &
Faizal, A. 2022. Characteristics of chili (Capsicum
annuum L.) that are resistant and susceptible to oriental fruit fly (Bactrocera dorsalis Hendel) infestation. Horticulture 8(4): 1-15.
Thakur, H., Jindal,
S.K., Sharma, A. & Dhaliwal, M.S. 2018. Chilli leaf curl virus disease: A
serious threat for chilli cultivation. Journal of Plant Diseases and
Protection 125: 239-249.
Trademap. 2023. Imports – Exports. Trade Map - Trade statistics for international
business development (Accessed on March 7th,
2023).
Tuhumury, G.N.C. & Amanupunyo, H.R. 2018. Kerusakan tanaman cabai akibat penyakit virus di desa Waimital kecamatan Kairatu. Agrologia 2(1):
36-42.
Windarningsih, M., Fauzi, M.T., Rohyadi, A. & Muthahanas, I. 2018. Penyebaran penyakit virus daun menguning dan keriting pada cabai rawit di kabupaten Lombok Utara. Crop Agro. 11(2): 145-150.
Yadav, R.K., Jayanthib, K., Kumar, S., Kumar, M., Ponnama,
N. & Reddy, I. 2022. Evaluation of chilli genotypes and understanding
biochemical basis of whitefly (Bemisia tabaci Genn.) resistance. South
African Journal of Botany 151: 433-444. https://doi.org/10.1016/j.sajb.2022.10.024
Zhang, P.J., Wei, J.N.,
Zhao, C., Zhang, Y.F., Li, C.Y., Liu, S.S., Dicke, M., Yu, X.P. & Turlings, T.C.J. 2019. Airborne host-plant manipulation by
whiteflies via an inducible blend of plant volatiles. PNAS 116(15): 7387-7396.
*Corresponding author;
email: tonn001@brin.go.id
|